Graphene/Fe2O3/SnO2 ternary nanocomposites as a high-performance anode for lithium ion batteries.

نویسندگان

  • Guofeng Xia
  • Ning Li
  • Deyu Li
  • Ruiqing Liu
  • Chen Wang
  • Qing Li
  • Xujie Lü
  • Jacob S Spendelow
  • Junliang Zhang
  • Gang Wu
چکیده

We report an rGO/Fe2O3/SnO2 ternary nanocomposite synthesized via homogeneous precipitation of Fe2O3 nanoparticles onto graphene oxide (GO) followed by reduction of GO with SnCl2. The reduction mechanism of GO with SnCl2 and the effects of reduction temperature and time were examined. Accompanying the reduction of GO, particles of SnO2 were deposited on the GO surface. In the graphene nanocomposite, Fe2O3 nanoparticles with a size of ∼20 nm were uniformly dispersed surrounded by SnO2 nanoparticles, as demonstrated by transmission electron microscopy analysis. Due to the different lithium insertion/extraction potentials, the major role of SnO2 nanoparticles is to prevent aggregation of Fe2O3 during the cycling. Graphene can serve as a matrix for Li+ and electron transport and is capable of relieving the stress that would otherwise accumulate in the Fe2O3 nanoparticles during Li uptake/release. In turn, the dispersion of nanoparticles on graphene can mitigate the restacking of graphene sheets. As a result, the electrochemical performance of rGO/Fe2O3/SnO2 ternary nanocomposite as an anode in Li ion batteries is significantly improved, showing high initial discharge and charge capacities of 1179 and 746 mAhg(-1), respectively. Importantly, nearly 100% discharge-charge efficiency is maintained during the subsequent 100 cycles with a specific capacity above 700 mAhg(-1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergistic effect of graphene and polypyrrole to enhance the SnO2 anode performance in lithium-ion batteries

In this work, a synergistic effect of reduced graphene oxide (rGO) and polypyrrole (PPy) was studied in terms of their promotional role to enhance the capacity and cyclic stability of hollow SnO2 anodes in lithium-ion batteries. The core–shell structured hollow SnO2/rGO/PPy nanocomposites were synthesized using a hydrothermal method followed by an in situ chemical-polymerization route. Substant...

متن کامل

Facile synthesis of SnO2 nanocrystals anchored onto graphene nanosheets as anode materials for lithium-ion batteries.

A SnO2/graphene nanocomposite was prepared via a facile solvothermal process using stannous octoate as a Sn source. The as-prepared SnO2/graphene nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, a long cycle life and a good rate capability when used as an anode material for lithium-ion batteries.

متن کامل

Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.

Complex hierarchical structures have received tremendous attention due to their superior properties over their constitute components. In this study, hierarchical graphene-encapsulated hollow SnO2@SnS2 nanostructures are successfully prepared by in situ sulfuration on the backbones of hollow SnO2 spheres via a simple hydrothermal method followed by a solvothermal surface modification. The as-pre...

متن کامل

Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries

Transition metal cobalt (Co) nanoparticle was designed as catalyst to promote the conversion reaction of Sn to SnO2 during the delithiation process which is deemed as an irreversible reaction. The designed nanocomposite, named as SnO2/Co3O4/reduced-graphene-oxide (rGO), was synthesized by a simple two-step method composed of hydrothermal (1(st) step) and solvothermal (2(nd) step) synthesis proc...

متن کامل

SnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries

Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 5 17  شماره 

صفحات  -

تاریخ انتشار 2013